翻訳と辞書
Words near each other
・ Borg-Warner T-90
・ Borg-Warner Trophy
・ Borgal
・ Borgan
・ Borgan, Fars
・ Borgang
・ Borgaon Dam
・ Borgaon Manju
・ Borgarbyggð
・ Borgarello
・ Borello
・ Borell–Brascamp–Lieb inequality
・ Borel–Cantelli lemma
・ Borel–Carathéodory theorem
・ Borel–de Siebenthal theory
Borel–Kolmogorov paradox
・ Borel–Moore homology
・ Borel–Weil theorem
・ Borel–Weil–Bott theorem
・ Boreman
・ Boreman Hall
・ Boreman, West Virginia
・ Boremshchyna
・ Boren
・ Boren (surname)
・ Boren (Sweden)
・ Boren, Germany
・ Boren-McCurdy proposals
・ Borena of Alania
・ Borena Zone


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Borel–Kolmogorov paradox : ウィキペディア英語版
Borel–Kolmogorov paradox
In probability theory, the Borel–Kolmogorov paradox (sometimes known as Borel's paradox) is a paradox relating to conditional probability with respect to an event of probability zero (also known as a null set). It is named after Émile Borel and Andrey Kolmogorov.
== A great circle puzzle ==
Suppose that a random variable has a uniform distribution on a unit sphere. What is its conditional distribution on a great circle? Because of the symmetry of the sphere, one might expect that the distribution is uniform and independent of the choice of coordinates. However, two analyses give contradictory results. First, note that choosing a point uniformly on the sphere is equivalent to choosing the longitude ''λ'' uniformly from ''()'' and choosing the latitude ''φ'' from ''()'' with density \frac \cos \phi . Then we can look at two different great circles:
:1. If the coordinates are chosen so that the great circle is an equator (latitude ''φ'' = 0), the conditional density for a longitude ''λ'' defined on the interval () is
:: f(\lambda|\phi=0) = \frac.
:2. If the great circle is a line of longitude with ''λ'' = 0, the conditional density for ''φ'' on the interval () is
::f(\phi|\lambda=0) =\frac \cos \phi.
One distribution is uniform on the circle, the other is not. Yet both seem to be referring to the same great circle in different coordinate systems.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Borel–Kolmogorov paradox」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.